
Computer Source Code
In Litigation

Andrew Schulman
SoftwareLitigationConsulting.com /

DisputeSoft.com

1

Outline of class

1. What is source code?
2. Why should attorneys care? What can you do with it in litigation?
3. Types of source code, and some important distinctions
4. Timeline of source-code use in litigation
5. Discovery & protective orders (POs)
6. Experts & source-code examination skills & methodology
7. How source code relates to computer forensics, e-discovery, etc.
8. Some cases
9. Trends & take-aways

2Schulman / Source Code / SoftwareLitigationConsulting.com

1. What is source code?
a. Briefly, a human-readable form of computer software/instructions
b. Some examples of what source code looks like
c. Some examples of what source code does NOT look like
d. Definitions of source code: © statute, FDA regulations
e. Case-specific definitions of source code e.g. in protective orders (POs)
f. Imperfect analogies to software: blueprint, recipe, piano roll
g. Why it’s called “code”: instructions, not Capt. Marvel Decoder Ring
h. Code as a special (operable) kind of text or document
i. “The Crown Jewels” -- embodiment of organization’s IP and of its

practices/policies

3Schulman / Source Code / SoftwareLitigationConsulting.com

1. What is source code?: Examples

a. SHOW some C code of mine -- mkndx.c to index src lines
b. SHOW Covid-19 contact-tracing app code
c. SHOW ProLaw CLE blurb graphic -- yep, this is source code
d. SHOW some lines of code from large open-source collection
e. SHOW something that is NOT code -- data/output
f. SHOW an example of software but NOT source code (an important

distinction) -- dump of binary; note binary contains strings not just 1s &
0s

4Schulman / Source Code / SoftwareLitigationConsulting.com

C source code -- from mkndx.c to index source

5Schulman / Source Code / SoftwareLitigationConsulting.com

Example: Singapore COVID-19 contact tracing app
“TraceTogether”, “BlueTrace” written in Java/Kotlin)

6Schulman / Source Code / SoftwareLitigationConsulting.com

Source code example (JavaScript; comments)

7Schulman / Source Code / SoftwareLitigationConsulting.com

Some lines of code from large open-source set

8
Schulman / Source Code / SoftwareLitigationConsulting.com

Data, not code

9Schulman / Source Code / SoftwareLitigationConsulting.com

Software, but not source code

10Schulman / Source Code / SoftwareLitigationConsulting.com

A portion of Windows binary/object code, viewed inside a word processor

1. What is source code?: Definitions

a. Source code is a human-readable form of software
b. 17 USC 101: “A ‘computer program’ is a set of statements or instructions

to be used directly or indirectly in a computer in order to bring about a
certain result.”

c. US FDA: “source code. (IEEE) (1) Computer instructions and data
definitions expressed in a form suitable for input to an assembler,
compiler or other translator. (2) The human readable version of the list
of instructions [program] that cause a computer to perform a task.”

d. One might ask: Why does the FDA care about source code?
e. US ITC: example of PO case-specific source-code definitions

11Schulman / Source Code / SoftwareLitigationConsulting.com

https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-guides/glossary-computer-system-software-development-terminology-895
https://www.usitc.gov/press_room/documents/featured_news/Ediscovery_attachment1.pdf

Source code definition from US ITC Model PO

12Schulman / Source Code / SoftwareLitigationConsulting.com

Source code definition from a PO

13Schulman / Source Code / SoftwareLitigationConsulting.com

http://www.docketalarm.com/cases/International_Trade_Commission/337-726/Certain_Electronic_Imaging_Devices/432768/3/

1. What is source code?: Software analogies

a. Some imperfect analogies for software
b. “Blueprints” -- how same/diff from source code
c. Recipes -- e.g. “The Sachertorte Algorithm”
d. “Piano roll blues”
e. Munitions or speech?: DeCSS (on t-shirts, ties), but Stuxnet

14Schulman / Source Code / SoftwareLitigationConsulting.com

http://www.cs.cmu.edu/~dst/DeCSS/Gallery/
https://www.amazon.com/gp/product/B00KEPLC08

1. What is source code?: Why software is called “code”

a. NOT “code” in the sense of something secret
b. Capt. Marvel Decoder Ring
c. Attorney in discovery dispute: “They have to give us all their Codes”
d. Code here = numbers that machine can interpret as instructions
e. Instructions -- SHOW machine code & ASM, from prime # program
f. Code as a special (operable) kind of text or document
g. Source code often indirectly operable

15Schulman / Source Code / SoftwareLitigationConsulting.com

“They have to give us Their Codes”

16Schulman / Source Code / SoftwareLitigationConsulting.com

Code = instructions to a machine

17Schulman / Source Code / SoftwareLitigationConsulting.com

For example, 3B corresponds to a CMP (compare) instruction

1. What is source code?: “The Crown Jewels”

a. “Our source code is our Crown Jewels” ...
b. … which often the owner can’t quite identify or put their hands on when

it comes time to produce them in discovery
c. In damages, the crown jewels may suddenly become “oh that old thing”
d. Source code may embody not only an organization’s IP, but also its

policies, “business rules,” and practices

18Schulman / Source Code / SoftwareLitigationConsulting.com

Policy / Business Rules embodied in code

19Schulman / Source Code / SoftwareLitigationConsulting.com

2. Why should lawyers care?
How can you use source code in litigation?

a. Headline-worthy software
b. Software is everywhere
c. Practice areas
d. Specific types of questions source code can answer
e. Not only in software cases: e.g. forensics, policy, models

20Schulman / Source Code / SoftwareLitigationConsulting.com

http://codev2.cc/

Newsworthy software

21Schulman / Source Code / SoftwareLitigationConsulting.com

2. Who cares?:
“Software is everywhere”: my practice

● Electric arc steel furnaces
(industrial control)

● Limousine services
● Metal detectors
● Actor motion/gesture capture
● HIV dating
● Machine tools, robotics
● Hedge fund
● DNA microarray
● Automotive firmware

22

● Door locks (Bluetooth, IoT; mobile
phone as intelligent key)

● Chinese online payment systems
● Mobile check deposit
● Cable modems
● Video teleconferencing
● Online shopping & advertising
● Web Rx ordering
● … as well as software as such

(Microsoft Windows, Microsoft
Office, Apple iOS, mobile apps)

Schulman / Source Code / SoftwareLitigationConsulting.com

“Software is everywhere”: DisputeSoft cases
with source-code examination

● Hospital dispute with medical
software vendor (support K)

● State health insurance exchange
(pre-litigation investigation)

● Smartphone touch screen patents
● Prison telephone system patent
● Property management (K breach)
● Casualty policy admin & billing

(arbitration re: COBOL to Java)
● Aviation maintenance ©

23

● County property tax management
(K software failure)

● Payroll software ©
● Oil & gas exploration ©
● Tenant management system (K

project failure)
● Exam prep materials © & TS
● Online sales leads ©
● Social media TS (Facebook)
● Source audit due diligence in M&A

Schulman / Source Code / SoftwareLitigationConsulting.com

2. Who cares?:
Source code in different legal practice areas

● IP: ©, patent, TS (not TM), including network, software-based devices
● Antitrust: e.g. Microsoft tying, expensive monopolization acts
● Torts / Products liability: medical devices, auto, aviation, industrial
● Contracts: project failure, defects
● Criminal law: code theft, code fraud (emissions), questioning forensics

devices/output (Confrontation Clause), sentencing predictions
● Employment law: TS = IP + employment law; company policy -- SHOW
● Environment law: EPA models (but careful with “statistical populism”)

24Schulman / Source Code / SoftwareLitigationConsulting.com

http://www.sonic.net/~undoc/comes_v_microsoft/Supp_Rpt_Andrew_Schulman.pdf
https://www.amazon.com/Design-Development-Medical-Electronic-Instrumentation/dp/0471676233
https://www.amazon.com/Car-Hackers-Handbook-Penetration-Tester-ebook/dp/B01CLAIL5C
https://scholar.smu.edu/cgi/viewcontent.cgi?article=4127&context=jalc
http://cseweb.ucsd.edu/~klevchen/diesel-sp17.pdf
https://www.amazon.com/New-Wigmore-Treatise-Evidence-Expert/dp/0735593531
https://www.amazon.com/Models-Environmental-Regulatory-Decision-Making/dp/0309110009

2. Why cares?:
Legal practice areas, continued

● Constitutional law: voting machines; code as speech; public library
internet filtering; evidence of bias; Confrontation Clause & forensic
devices (Bullcoming v. NM on machine-generated evidence)

● Regulatory compliance: HIPAA, FISMA, SOX, GDPR, CFTC
● Tax law: software depreciation, amortization
● Privacy: HIPAA; GDPR; class actions; employer monitoring -- SHOW
● Mergers/acquisitions (M&A) due diligence: open source audits
● Cybersecurity: corporate liability for data breach by hacker

25Schulman / Source Code / SoftwareLitigationConsulting.com

https://jhalderm.com/pub/papers/diebold-ttbr07.pdf
https://www.newyorker.com/tech/annals-of-technology/new-york-citys-bold-flawed-attempt-to-make-algorithms-accountable
https://www.yalelawjournal.org/article/machine-testimony
https://www.yalelawjournal.org/article/machine-testimony
https://casetext.com/case/bullcoming-v-new-mexico-3
https://www.amazon.com/Cybersecurity-Law-Jeff-Kosseff/dp/1119231507

2. Who cares?:
Some specific questions source code can answer
● Does this product, service, or in-house process do/contain?; equivalent?
● Are there similarities (literal or not) between these products due to copying?
● Is there an error or unusual feature common to both products?
● Was this code protected by reasonable security precautions?

(RSP for TS; cybersecurity liability after data breach)
● Does the company’s manual match its actual de facto policy?
● Who wrote this code?
● Did this internal email come to fruition?
● Is this bug within reasonable industry standards? Fit for intended use?
● Is this software’s output real or fake?
● Is this computer-generated forensics output sufficiently reliable?

26Schulman / Source Code / SoftwareLitigationConsulting.com

2. Who cares?:
More specific questions source code can answer
● What % overlap is there between these two pieces of software?
● Where did this computer-generated evidence (CGE) come from?
● What statistical model are these projections based upon?
● What assumptions does this device or process make?
● What bugs or errors does this contain, which could affect results?
● What are this organization’s business rules?
● Were there good contemporaneous reasons to not fix this bug?
● What risks or vulnerabilities might this code present? (Software

Composition Analysis (SCA) for e.g. M&A due diligence)

What source can’t CAN’T answer: static vs. dynamic views of software
(see later discussion of reverse engineering)

27Schulman / Source Code / SoftwareLitigationConsulting.com

3. Types of source code; important distinctions

a. Binary/object code vs. source code vs. open/readable proprietary code;
SHOW JavaScript code for Excel Online in Chrome Web Developer

b. High-level language (HLL) vs. assembly language (ASM) -- SHOW
c. Programming languages: C++, Java, JavaScript (JS), Perl, Python, SQL, R…
d. Interpreted vs. compiled; scripts, batch/cmd files
e. Standalone vs. client/server, network, mobile
f. In-house software vs. product/server on the market
g. Firmware, embedded software
h. Platforms: Android, iOS, OSX, Windows, Linux; mobile vs. desktop
i. Application vs. library: APIs, SDKs

28Schulman / Source Code / SoftwareLitigationConsulting.com

Microsoft Excel Online, JS in Web Developer

29Schulman / Source Code / SoftwareLitigationConsulting.com

Machine language, assembly, and C

30Schulman / Source Code / SoftwareLitigationConsulting.com

3. Types of source code -- continued

j. Database code: SQL, including stored procedures
k. Auto-generated code, “wizards”
l. Statistical code: SAS, R
m. Excel: cell formulas; VBA scripts

31Schulman / Source Code / SoftwareLitigationConsulting.com

Where are we?

1. What is source code?
2. Why should attorneys care? What can you do with it in litigation?
3. Types of source code, and some important distinctions
4. Timeline of source-code use in litigation
5. Discovery, protective orders (POs)
6. Experts & source-code examination skills & methodology
7. How source code relates to computer forensics, e-discovery, etc.
8. Some cases
9. Trends & take-aways

32Schulman / Source Code / SoftwareLitigationConsulting.com

4. A timeline of source-code use in litigation

● Request for production or for inspection (or mandatory disclosure
obligation e.g. under LPRs)

● Attorney has client custodians inventory its ESI, including source code
● Produce under PO to other side’s experts, generally in environment

with constraints; maybe under 33(d) rog response
● Exam: Initial inventory of what was produced (sometimes massive)
● Indexing, possibly with regularization, cleaning
● Initial search with initial keywords
● Refining/expanding keywords, reading, tracing, note-taking (see PO)

33Schulman / Source Code / SoftwareLitigationConsulting.com

4. Timeline, continued

● Select, extract, and/or print few files
● Review by producing party, then Bates stamp, send to requesting party
● Reading/analyze (except some POs say only in situ during exam)
● Possibly repeat search/extract/review/analyze
● Possibly repeat requests, repeat visits for missing or new code
● Expert report, affidavit (PO issues -- AEO)
● Expert deposition -- before or after see other side’s report?

34Schulman / Source Code / SoftwareLitigationConsulting.com

4. Timeline, continued

● Repeat?: other side’s report, rebuttal report may inspire another visit
● Amend or supplement pleadings, if good cause / diligence
● Securely maintain source code or printouts per PO
● Possibly demonstrative exhibits, though usually not “smoking gun”
● Trial testimony
● Return or destroy code and code-based materials

35Schulman / Source Code / SoftwareLitigationConsulting.com

5. Discovery and Protective Orders (POs)

a. Discovery: production & requests
b. Who, what, when, where, why, how, how much
c. Protective orders (POs)
d. Third-party code: commingling & subpoenas
e. Missing code, alterations & spoliation
f. Gamesmanship & proportionality; know why you are asking for (or

refusing) source code -- specific narrowly-tailored requests more likely
to lead to source code discoverability

36Schulman / Source Code / SoftwareLitigationConsulting.com

5. Source code discovery: a magistrate’s view

“In a typical patent infringement case involving computer software, few tasks excite a defendant
less than a requirement that it produce source code. Engineers and management howl at the
notion of providing strangers, and especially a fierce competitor, access to the crown jewels.
Counsel struggle to understand even exactly what code exists and exactly how it can be made
available for reasonable inspection. All sorts of questions are immediately posed:

● Exactly who representing the plaintiff gets access—and does this list include patent
prosecution counsel, undisclosed experts, and so-called ‘competitive decision makers’?

● Must requirements and specification documents that explain the functionality implemented
by the code be included?

● What compilation, debugging and analysis tools are required?
● ...

37Schulman / Source Code / SoftwareLitigationConsulting.com

5. Discovery: Apple v. Samsung, continued

● What about the test database and user manuals?
● Make files? Build files?
● Does the code have to [be] produce[d] in a native repository such as CVS or Perforce?
● Must daily builds in development be produced (and if so, in real-time or batch?) or is

production limited only to copies in commercial release?

Put simply, source code production is disruptive, expensive, and fraught with monumental
opportunities to screw up.”

Apple v. Samsung (ND Cal 2012), ORDER GRANTING APPLE'S MOTION FOR 37(B)(2) SANCTIONS
RE DECEMBER 22 DISCOVERY ORDER

38Schulman / Source Code / SoftwareLitigationConsulting.com

http://assets.sbnation.com/assets/1101009/Sanction_Order.pdf

5. Source code discovery: who, what, when, ...

● WHO gets to see source code? (PO, AEO)
● WHOSE source code: D’s, P’s, third party (3P)?
● WHAT/WHICH source code: specific versions, forthcoming, old?
● WHAT types of files: build scripts, logs, object code, etc.? (how “source

code” is defined in this case’s PO)
● WHEN is the source code from: old from backup, forthcoming?
● WHEN is the source code produced: rolling production?
● WHERE is the source code located in the organization: central

repository, dispersed, employee homes, on backups, in the cloud?

39Schulman / Source Code / SoftwareLitigationConsulting.com

5. Source code discovery: who, what, when, ...

● WHERE will the source be produced to the other side:
sent to expert, in cloud, on-site, law firm, escrow facility?

● WHY are you asking for source code? (know why you are asking,
what questions you expect to have answered; fishing expeditions)

● WHY are you refusing? (really TS concern, or want to stick it to
the other side e.g. because “troll” without MAD?)

● HOW: how will the source code be produced?; format: native,
inside version control, original path/filenames, metadata

● HOW MUCH: dump all versions (careful what you ask for), sample?

40Schulman / Source Code / SoftwareLitigationConsulting.com

5. Source code discovery & POs, continued
● Protective orders (POs)
● Third-party (3P) code: drop-in libraries; possession/custody/control;

commingling; 3P subpoenas; discovery rules enforced tightly for 3P
● Missing code, altered code, “redactions” & spoliation
● Proportionality; know why you are asking for (or refusing) source code
● Amending & supplementing, good cause vs. “reserve right”, diligence
● Generally few authentication, privilege, admissibility issues

41Schulman / Source Code / SoftwareLitigationConsulting.com

5. Source code protective orders (POs)
● Blanket/umbrella designation of ALL source code as TS or CBI, even

though most contains large amounts of public/open source
● AEO for CBI; outside counsel; patent prosecution bar
● PO largely defines source-code examination environment: standalone

computer, no USB, no internet -- so no comparisons
● Tools placed on standalone exam computer
● Printing limits
● Some POs require all analysis on site
● Will there be a trend towards remote/cloud source-code access?
● See article on impact of POs on source code exam; AJL article

42Schulman / Source Code / SoftwareLitigationConsulting.com

https://www.disputesoft.com/wp-content/uploads/2019/10/Source-Code-Protective-Orders.pdf
https://www.fclr.org/fclr/articles/html/2010/Loren_Laird%20-%20Publication.pdf

5. Missing/altered code & spoliation
● Source code examiner might overlook
● Not all source code centralized in version control: scripts; Microsoft
● Older code on less-accessible backups
● Custodian inventory often seems half-hearted; “policy” vs. reality
● Producing client code, but not server code
● Producing Windows code, but not Android, iPhone/iOS, Mac/OSX
● Not producing with original folder/file names
● “Redacting” code (especially comments)
● Many spoliation cases: destroying, or allowing alteration
● Losing the “crown jewels,” or turns out Crown doesn’t know its jewels

43Schulman / Source Code / SoftwareLitigationConsulting.com

http://www.sonic.net/~undoc/comes_v_microsoft/Supp_Rpt_Andrew_Schulman.pdf

6. Experts: source-code exam skills, methods

a. Background/skills needed for source-code exam in litigation
b. Tools used in source-code exam
c. Source code exam method/process: before, during, after; Daubert
d. Some source-code problems or “gotchas”
e. Expert report
f. Expert’s own code

44Schulman / Source Code / SoftwareLitigationConsulting.com

6. Experts: background, skills

● Background/skills needed for source-code exam in litigation
● Why not an e-discovery wizard -- “pattern matching”
● Why not just any programmer -- answering litigation questions
● Computer science (CS) or Software engineering (SE)?; networking
● Consulting non-testifying experts; coordination
● Some specific skills...

45Schulman / Source Code / SoftwareLitigationConsulting.com

6. Experts: some specific skills; ability to...
● match X and Y, based on attributes (e.g., F/W/R, I/O); synonyms
● do tracing to/from search hits; not just “pattern matching”
● recognize key “idioms” in code, even if not labelled as such

(names or “symbols” in code are just linkages)
● recognize important low-level from high-level, vice versa

(e.g. see associative array, know likely hash table underneath)
● recognize constructs when unnamed (anonymous functions),

or oddly named (programmer’s favorite alien species, “chilluns”)
● detect when something is missing (not just missing code, but also

some necessary element, e.g. of patent claim, is possibly not done)
● test assertions (Wason card problem)

46Schulman / Source Code / SoftwareLitigationConsulting.com

https://en.wikipedia.org/wiki/Wason_selection_task

6. Experts: Tools used in source-code exam

● SHOW SciTools Understand (e.g. call tree ~ Shepardizing)
● SHOW WinMerge
● SHOW dtSearch
● SHOW Command line tools: grep, diff, findstr, strings; Cygwin
● SHOW Scripting languages available on locked-down source-code

computer under PO: awk, VB (PowerShell)
● Others, often listed in POs; XCode, MSFT Visual Studio, Sigasi (VHDL),

PowerGrep, Notepad++, SlickEdit, Eclipse, etc.; EnCase; CodeSuite
● Ad hoc v. off-the-shelf; in-house (CodeExaminer); Daubert issues

47Schulman / Source Code / SoftwareLitigationConsulting.com

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/findstr
https://docs.microsoft.com/en-us/sysinternals/downloads/strings
https://www.cygwin.com/
https://www.powergrep.com/
https://www.guidancesoftware.com/encase-forensic
https://www.safe-corp.com/PR/pr_CodeSuite.htm
https://www.disputesoft.com/code-examiner-source-code-comparison-and-analysis-software/

Tools: Understand (SciTools)

48Schulman / Source Code / SoftwareLitigationConsulting.com

https://scitools.com/

Tools: WinMerge (diff)

49Schulman / Source Code / SoftwareLitigationConsulting.com

https://winmerge.org/?lang=en

Tools: dtSearch

50Schulman / Source Code / SoftwareLitigationConsulting.com

https://dtsearch.com/

Command-line tools example: grep (regex)

51Schulman / Source Code / SoftwareLitigationConsulting.com

https://www.amazon.com/Mastering-Regular-Expressions-Understand-Productive-ebook/dp/B007I8S1X0

Command-line tools example: awk script

52Schulman / Source Code / SoftwareLitigationConsulting.com

https://www.amazon.com/AWK-Programming-Language-Alfred-Aho/dp/020107981X

6. Experts: Method, process

One approach: before/during/after exam

● Before the exam (including pre-filing investigation)
○ If consultant/expert brought on early, help draft discovery requests
○ Diligently mine public info, including reverse engineering public product/service
○ Often can “map” source-code hierarchy from public product
○ Study platform, APIs
○ Establish initial set of specific narrow technical questions
○ Carefully read the PO!

● ….

53Schulman / Source Code / SoftwareLitigationConsulting.com

6. Experts: Method, process

● During the exam
○ Take inventory of source: list directories; count file extensions; list ©, open source, 3P
○ Look for files or keywords known from pre-filing/pre-discovery investigations
○ Pay attention to PO restrictions on note-taking, printing, analysis only on-site
○ Code indexing, searching, reading, tracing, analyzing, comparing (if possible)
○ Follow standard methods, e.g. Spinellis, Code Reading; Microsoft, Code Complete
○ Try to answer specific narrowest, clearest questions first
○ Look for absences: missing code, required negatives (e.g. patent claim elements)

● After the exam
○ Analysis, if allowed by PO
○ Report drafting, possibly paraphrasing source code
○ Possibly amend/supplement, rebut, additional discovery requests, revisit source

54Schulman / Source Code / SoftwareLitigationConsulting.com

6. Experts: source-code exam problems
● Wrong source code produced, possibly because didn’t request properly

(“You didn’t say ‘Simon Says’”); produce client without server
● Wrong version of code
● Missing files, missing 3P libraries, owner doesn’t have source (!)
● Code produced, but examiner overlooks (odd file extensions, archives)
● Examiner fails to follow PO: printing too much, note-taking
● Producing party fails to follow PO: forgot to turn off USB, internet
● Producing party turns off necessary tools on source-code machine
● PO inhibits analysis necessary for case: e.g. © code comparison

55Schulman / Source Code / SoftwareLitigationConsulting.com

6. Experts: source-code exam “gotchas”
● Jumping from comparisons to conclusions, without baseline
● Assuming names or comments are accurate, or misinterpreting
● Focusing on source code not used in product, or not executed
● Not correlating static source code with dynamic view of public product
● Code path modified at run-time: function pointers, hooks, callbacks
● Unclear entry points into code: public URL -> code that handles
● Implicit or “invisible” code executed: e.g. C++ constructors, destructors
● Missing aliases for names: functions; data flow
● Failure to look for absences, negatives, counter-examples

56Schulman / Source Code / SoftwareLitigationConsulting.com

6. Expert report

● FRCP requirements
● Daubert basis for opinion: path from facts to opinions
● Negative conclusions or absences especially need method description
● PO possibly forbids quoting from code: paraphrasing
● Report may be AEO, redacted for retaining party?
● Rebuttal reports
● Expert’s own code -- SHOW Novartis v. Ben Venue Labs

57Schulman / Source Code / SoftwareLitigationConsulting.com

Experts: “inscrutable” code in case opinion

58

Where are we?

1. What is source code?
2. Why should attorneys care? What can you do with it in litigation?
3. Types of source code, and some important distinctions
4. Timeline of source-code use in litigation
5. Discovery, protective orders (POs)
6. Experts & source-code examination skills & methodology
7. How source code relates to computer forensics, e-discovery, etc.
8. Some cases
9. Trends & take-aways

59Schulman / Source Code / SoftwareLitigationConsulting.com

7. How source code examination relates to...

a. Computer forensics; code vs. data; except malware RE
b. Forensics generally: individuation vs. classification;

but examine software used in forensics devices (“black box”)
c. E-discovery, ESI (how source code is similar/different)
d. Other ways of examining software, e.g. reverse engineering
e. Non-litigation source code exam (re: post-Daubert factors)
f. How source code relates to software product on the market

60Schulman / Source Code / SoftwareLitigationConsulting.com

https://www.softwarelitigationconsulting.com/articles/source-code-and-e-discovery
https://www.softwarelitigationconsulting.com/articles/hiding-in-plain-sight-using-reverse-engineering-to-uncover-software-patent-infringement/

8. Some cases: source-code discovery issues

● Keithley v. HomeStore -- spoliation; allowed source to be
destroyed/altered after lawsuit initiated

● OpenTV v. Liberate -- which party bears cost of extracting; Zubulake
● Rosenthal Collins v. Trading Tech -- “turning back the clock” on source

code dates, wiping
● MediSim v. BestMed -- testifying expert relying on consultant’s source

code exam?
● Unwired Planet v. Apple -- printing limits, quoting source in report
● Advanced Software v. Fiserv -- 4 months source code access ample

time to find (or not find) info to amend complaint

61Schulman / Source Code / SoftwareLitigationConsulting.com

https://casetext.com/case/keithley-vhomestorecom
https://casetext.com/case/opentv-v-liberate-technologies
https://casetext.com/case/rosenthal-collins-group-v-trading-technologies-intl-2
https://casetext.com/case/medisim-ltd-v-bestmed-llc-3
https://casetext.com/case/unwired-planet-llc-v-apple-inc-2
https://casetext.com/case/advanced-software-design-corp-v-fiserv-inc

8. Sample source code cases
● Apple v. Samsung -- “smartphone wars”; patents, incl. design patents
● US v. Microsoft antitrust, class actions -- tying, anticompetitive acts
● Cisco v. Arista -- ©, TS, ex-employees
● USAA v. WFB -- mobile check deposit patents; 3P Mitek code
● Doe v. PositiveSingles.com -- atty malpractice to not hire src expert?
● State v. Chun (NJ, 2008) -- DUI breathalyzer source code, “black box”
● People v. Johnson (CA, 2018-9) -- TrueAllele DNA forensic software &

Confrontation Clause (ACLU)
● Novartis v. Ben Venue Labs (shown earlier)
● REC v. Bamboo (pinpoint source citations in amend patent claim tables)

62Schulman / Source Code / SoftwareLitigationConsulting.com

http://www.sonic.net/~undoc/comes_v_microsoft/Supp_Rpt_Andrew_Schulman.pdf
https://casetext.com/case/cisco-sys-inc-v-arista-networks-inc-14
https://casetext.com/case/united-servs-auto-assn-v-wells-fargo-bank-na-3
https://www.lawyersandsettlements.com/legal-news/consumer-fraud/award-against-dating-site-20327.html
https://www.researchgate.net/publication/231900887_Of_Black_Boxes_Instruments_and_Experts_Testing_the_Validity_of_Forensic_Science
https://www.aclu.org/sites/default/files/field_document/2017-09-14_billy-ray-johnson_amicus-full_accepted.pdf
https://casetext.com/case/rec-software-usa-3

9. Trends

● Move away from requiring on-site inspection, to producing in cloud?
● Source code using non-English, e.g. Chinese, Korean
● AI, machine learning, models, training
● 3D printing and Ⓒ: code or data?
● SaaS, cloud
● Code mining, Big Code, code patterns

63Schulman / Source Code / SoftwareLitigationConsulting.com

https://www.amazon.com/Printing-Intellectual-Property-Lucas-Osborn-ebook/dp/B07T9MCFWH

Take-aways

a. Think about how you might use source code in a case.
b. Look at computer-generated evidence and ask “How did this get here?”
c. Are an organization’s practices/policies implemented in software?

If so, UTSL (“Use the Source, Luke!”)
d. Similarly for a device’s output (machine-generated evidence).
e. But don’t overdo it: “stop and think,” proportionality,

alternatives to source code; plausibility & reasonable doubt
f. Source code is another type of doc...
g. … but not just any old doc: special skills needed to read and analyze

64Schulman / Source Code / SoftwareLitigationConsulting.com

For more information...

SoftwareLitigationConsulting.com

DisputeSoft.com

My email: aschulman@disputesoft.com

LinkedIn

Questions?

65Schulman / Source Code / SoftwareLitigationConsulting.com

http://www.softwarelitigationconsulting.com
http://www.disputesoft.com
mailto:aschulman@disputesoft.com
https://www.linkedin.com/in/andrew-schulman-2a103a4/

