Page 1
Claude analyzes disassembled code - Claude
https://claude.ai/chat/8ccb3d7b-f40c-4c04-81d3-0be6348c00d6

(@ Temporarily Defaulting to Concise X

Responses
e I've connected Claude to Google Drive. How do | point you at a file in my Geogle Drive? | only We're experiencing high demand.
see a paperclip icon for uploading a file from my computer. Chat more with Claude using concise
responses or switch back to full
responses.

I'want to clarify something - I don't actually have any ability to connect to or access
Google Drive. The only way I can work with files is if you upload them directly to our
conversation using the paperclip/upload icon you mentioned.

Is there a specific file you'd like to analyze? You can download it from your Google Drive
and then upload it here, and I'll be happy to help you work with it.

@ Okay, | don't understand why Claude would prominently urge me to connect to Google Drive,

if you can't do anything with it, but anyway I'm uploading a file. Summarize it for me.

This is an x86 assembly listing generated by Microseft's optimizing compiler froma C
source file (reg3.c). The program appears to be implementing various regression analysis
functions:

Key components:

« Several data structures for storing x/

values and logarithmic transformations

a Functinng far diffarant ragracsian times: linear Ingarithmin synansntial_ and nawsr

Statistical calculations including sums (sumx, sumy), squared terms (Sumx2, sumy2),
cross products (sumxy)

Support for computing R-squared (12) values

Exror checking and data validation
« Pretty-printing functionality for regression results

The main functionality seems focused on fitting different regression models to data
points and evaluating their fit using R-squared values. There's particular attention to
handling different regression types (linear, log, exponential, power) through a unified
interface.

@ ' ot doubting that your summary is accurate, but can you walk me through how you came
up with that, given the file doesn't explicitly say anything about regression, for example?

Here's how [identified the regression analysis focus:

1. Variable names that indicate statistical/mathematical operations:

These are classic components of regression calculations - sums of x and y values, their
squares, and their products.

2. Function names that reveal regression types:

3. String constants for output formatting:

This shows output of regression coefficients (a, b) and R-squared values.

4. Arrays for data storage:

H DUP (2)

H DUP (2)

Captured by FireShot Pro: 01 January 2025, 06:21:04
https://getfireshot.com

https://claude.ai/chat/8ccb3d7b-f40c-4c04-81d3-0be6348c00d6
https://getfireshot.com

Page 2
Claude analyzes disassembled code - Claude

https://claude.ai/chat/8ccb3d7b-f40c-4c04-81d3-0be6348c00d6

These store the input points and their logarithmic transformations, needed for different

regression types.

@ Nice. How about your "fitting different regression models to data points and evaluating their
fit using R-squared values® conclusion? How did you come up with that?

I found several pieces of evidence that show the program is comparing and evaluating
different regression models:
1. The code cycles through different regression types and tracks the best fit. Note this
structurein _do_do_regr :

assenbly

ion type

2. R-squared calculation and comparison:

assenbly cop

3. The storing of best-fit parameters when a better model is found:

assenbly cop

G This leads to an obvious question: if | had uploaded the original binary file (a Windows .exe),
could you have done the same type of analysis?

No, analyzing a binary executable would be much more difficult. The assembly listing T
analyzed contains source-level information like variable names, string constants, and
comments that reveal the program's purpoese. A compiled binary would strip most of
these, replacing meaningful names with memory addresses and removing comments and
structure annotations. While reverse engineering tools could help decompile the binary,
the resulting analysis would be more challenging and less definitive without these

semantic clues.

e What if the program had been compiled with debug symbols, and these were reflected in a
disassembly listing? Could you then do it?

Yes- debug symbols would provide many of the same semantic clues I used in analyzing
the assembly listing, like function and variable names, data structure definitions, and
type information. However, a key difference is that debug symbols typically won't include
the original source comments or show the relationship between high-level C constructs
and their compiled form as clearly as the assembly listing does.
0 Copy O Retry 1 @

% Claude can make mistakes. Please double-check responses.

| don't have a version with debug symbols at the moment, but I do have an assembly @ .
listing that was decompiled with the executable file. While it doesn't have the helpful

function and variable names, it does reference the text strings in context. See

attached.

Claude 3.5 Sonnet ~ Concise ~ Use chift + return for new line

Captured by FireShot Pro: 01 January 2025, 06:21:04
https://getfireshot.com

https://claude.ai/chat/8ccb3d7b-f40c-4c04-81d3-0be6348c00d6
https://getfireshot.com
https://support.anthropic.com/en/articles/8525154-claude-is-providing-incorrect-or-misleading-responses-what-s-going-on

